← Back to Home

Machine Learning Roadmap#

A structured path to master machine learning concepts and applications.

Phase 1: Prerequisites#

Mathematics#

  • Linear algebra (vectors, matrices)
  • Calculus (derivatives, gradients)
  • Probability & statistics
  • Optimization basics

Programming#

  • Python fundamentals
  • NumPy and Pandas
  • Data visualization (Matplotlib, Seaborn)
  • Jupyter notebooks

Phase 2: Core ML Concepts#

Supervised Learning#

  • Linear regression
  • Logistic regression
  • Decision trees
  • Random forests
  • Support vector machines

Model Evaluation#

  • Train/test split
  • Cross-validation
  • Metrics (accuracy, precision, recall, F1)
  • Confusion matrix
  • ROC curves

Feature Engineering#

  • Feature scaling
  • Feature selection
  • Dimensionality reduction
  • PCA and t-SNE

Phase 3: Advanced Topics#

Unsupervised Learning#

  • K-means clustering
  • Hierarchical clustering
  • DBSCAN
  • Gaussian mixture models

Ensemble Methods#

  • Bagging
  • Boosting
  • Gradient boosting
  • XGBoost, LightGBM

Neural Networks#

  • Perceptrons
  • Feedforward networks
  • Backpropagation
  • Activation functions

Phase 4: Practical ML#

Frameworks#

  • Scikit-learn
  • TensorFlow
  • PyTorch
  • Keras

MLOps#

  • Model versioning
  • Model deployment
  • Monitoring and maintenance
  • A/B testing

Resources#

  • Courses: Andrew Ng ML Course, Fast dot ai
  • Books: Hands-On Machine Learning by Aurélien Géron
  • Practice: Kaggle competitions

Timeline#

Estimated completion: 4-8 months with hands-on projects